感知机

Table of Contents

  1. 感知机模型
  2. 感知机学习策略
    1. 数据集的线性可分性
    2. 感知机学习策略
  3. 感知机学习算法
    1. 感知机学习算法的原始形式
    2. 算法的收敛性

二类分类的线性分类模型 输入:实例的特征向量 输出:实例的类别

感知机模型

f(x) = sign(w*x + b) if(x >= 0) sign(x) = 1; else sign(x) = -1;

感知机学习策略

数据集的线性可分性

感知机学习策略

确定学习策略,即定义损失函数并使损失函数最小化 感知机采用损失函数输入特征:误分类点到超平面的距离 感知机损失函数定义: 2017-2-27-感知机_ab7214279dec2ff9cd602f6693b6cc27b8fc3624.png 其中,M是误分类点的集合。 给定数据集T,损失函数是w,b的连续可导函数

感知机学习算法

求解损失函数的最优化问题的方法。 梯度下降法, 原始形式、对偶形式

感知机学习算法的原始形式

误分类驱动 梯度下降法 一次随机选取一个误分类点使其梯度下降 随机选取一个误分类点 2017-2-27-感知机_06641331faffdb0a4e8760a85a6d0c89574f04bb.png , 对w,b进行更新: 2017-2-27-感知机_5bf47d31598ba1e635ab0bb53b944075b0517561.png 采用不同的初值或者选取不同的分类点,解可以不同。

算法的收敛性

当训练数据集线性可分时,感知机学习算法原始形式是迭代收敛的,当不可分时,迭代不收敛

发布于: 2017年 02月 27日